Data Science with Python and Dask

Data Science with Python and Dask
Author : Jesse Daniel
Publisher : Manning Publications
Total Pages : 296
Release : 2019-07-30
ISBN 10 : 1617295604
ISBN 13 : 9781617295607
Language : EN, FR, DE, ES & NL

Data Science with Python and Dask Book Description:

Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask

Data Science with Python and Dask

Data Science with Python and Dask
Author : Jesse Daniel
Publisher : Simon and Schuster
Total Pages : 296
Release : 2019-07-08
ISBN 10 : 9781638353546
ISBN 13 : 1638353549
Language : EN, FR, DE, ES & NL

Data Science with Python and Dask Book Description:

Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask

Scalable Data Analysis in Python with Dask

Scalable Data Analysis in Python with Dask
Author : Mohammed Kashif
Publisher :
Total Pages :
Release : 2019
ISBN 10 : 1789808928
ISBN 13 : 9781789808926
Language : EN, FR, DE, ES & NL

Scalable Data Analysis in Python with Dask Book Description:

Build high-performance, distributed, and parallel applications in Dask About This Video Leverage the power of parallel computing using Dask.delayed Get complete exposure to using Dask to handle large data in a distributed setting Learn how to do Machine Learning by combining scikit-learn and Dask in a distributed setting In Detail Data analysts, Machine Learning professionals, and data scientists often use tools such as pandas, scikit-Learn, and NumPy for data analysis on their personal computer. However, when they want to apply their analyses to larger datasets, these tools fail to scale beyond a single machine, and so the analyst is forced to rewrite their computation. If you work on big data and you're using pandas, you know you can end up waiting up to a whole minute for a simple average of a series. And that's just for a couple of million rows! In this course, you'll learn to scale your data analysis. Firstly, you will execute distributed data science projects right from data ingestion to data manipulation and visualization using Dask. Then, you will explore the Dask framework. After, see how Dask can be used with other common Python tools such as NumPy, pandas, Matplotlib, scikit-learn, and more. You'll be working on large datasets and performing exploratory data analysis to investigate the dataset, then come up with the findings from the dataset. You'll learn by implementing data analysis principles using different statistical techniques in one go across different systems on the same massive datasets. Throughout the course, we'll go over the various techniques, modules, and features that Dask has to offer. Finally, you'll learn to use its unique offering for Machine Learning, using the Dask-ML package. You'll also start using parallel processing in your data tasks on your own system without moving to the distributed environment.

Practical Data Science with Python 3

Practical Data Science with Python 3
Author : Ervin Varga
Publisher : Apress
Total Pages : 462
Release : 2019-09-07
ISBN 10 : 9781484248591
ISBN 13 : 1484248597
Language : EN, FR, DE, ES & NL

Practical Data Science with Python 3 Book Description:

Gain insight into essential data science skills in a holistic manner using data engineering and associated scalable computational methods. This book covers the most popular Python 3 frameworks for both local and distributed (in premise and cloud based) processing. Along the way, you will be introduced to many popular open-source frameworks, like, SciPy, scikitlearn, Numba, Apache Spark, etc. The book is structured around examples, so you will grasp core concepts via case studies and Python 3 code. As data science projects gets continuously larger and more complex, software engineering knowledge and experience is crucial to produce evolvable solutions. You'll see how to create maintainable software for data science and how to document data engineering practices. This book is a good starting point for people who want to gain practical skills to perform data science. All the code will be available in the form of IPython notebooks and Python 3 programs, which allow you to reproduce all analyses from the book and customize them for your own purpose. You'll also benefit from advanced topics like Machine Learning, Recommender Systems, and Security in Data Science. Practical Data Science with Python will empower you analyze data, formulate proper questions, and produce actionable insights, three core stages in most data science endeavors. What You'll Learn Play the role of a data scientist when completing increasingly challenging exercises using Python 3 Work work with proven data science techniques/technologies Review scalable software engineering practices to ramp up data analysis abilities in the realm of Big Data Apply theory of probability, statistical inference, and algebra to understand the data science practices Who This Book Is For Anyone who would like to embark into the realm of data science using Python 3.

Learn Python by Building Data Science Applications

Learn Python by Building Data Science Applications
Author : Philipp Kats
Publisher : Packt Publishing Ltd
Total Pages : 482
Release : 2019-08-30
ISBN 10 : 9781789533064
ISBN 13 : 1789533066
Language : EN, FR, DE, ES & NL

Learn Python by Building Data Science Applications Book Description:

Understand the constructs of the Python programming language and use them to build data science projects Key Features Learn the basics of developing applications with Python and deploy your first data application Take your first steps in Python programming by understanding and using data structures, variables, and loops Delve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in Python Book Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learn Code in Python using Jupyter and VS Code Explore the basics of coding – loops, variables, functions, and classes Deploy continuous integration with Git, Bash, and DVC Get to grips with Pandas, NumPy, and scikit-learn Perform data visualization with Matplotlib, Altair, and Datashader Create a package out of your code using poetry and test it with PyTest Make your machine learning model accessible to anyone with the web API Who this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.

Python Data Analysis

Python Data Analysis
Author : Avinash Navlani
Publisher : Packt Publishing Ltd
Total Pages : 478
Release : 2021-02-05
ISBN 10 : 9781789953459
ISBN 13 : 1789953456
Language : EN, FR, DE, ES & NL

Python Data Analysis Book Description:

Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key Features Prepare and clean your data to use it for exploratory analysis, data manipulation, and data wrangling Discover supervised, unsupervised, probabilistic, and Bayesian machine learning methods Get to grips with graph processing and sentiment analysis Book Description Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learn Explore data science and its various process models Perform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing values Create interactive visualizations using Matplotlib, Seaborn, and Bokeh Retrieve, process, and store data in a wide range of formats Understand data preprocessing and feature engineering using pandas and scikit-learn Perform time series analysis and signal processing using sunspot cycle data Analyze textual data and image data to perform advanced analysis Get up to speed with parallel computing using Dask Who this book is for This book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book.

Driving Scientific and Engineering Discoveries Through the Convergence of HPC Big Data and AI

Driving Scientific and Engineering Discoveries Through the Convergence of HPC  Big Data and AI
Author : Jeffrey Nichols
Publisher : Springer Nature
Total Pages : 555
Release : 2020-12-22
ISBN 10 : 9783030633936
ISBN 13 : 3030633934
Language : EN, FR, DE, ES & NL

Driving Scientific and Engineering Discoveries Through the Convergence of HPC Big Data and AI Book Description:

This book constitutes the revised selected papers of the 17th Smoky Mountains Computational Sciences and Engineering Conference, SMC 2020, held in Oak Ridge, TN, USA*, in August 2020. The 36 full papers and 1 short paper presented were carefully reviewed and selected from a total of 94 submissions. The papers are organized in topical sections of computational applications: converged HPC and artificial intelligence; system software: data infrastructure and life cycle; experimental/observational applications: use cases that drive requirements for AI and HPC convergence; deploying computation: on the road to a converged ecosystem; scientific data challenges. *The conference was held virtually due to the COVID-19 pandemic.

Ensemble Learning for AI Developers

Ensemble Learning for AI Developers
Author : Alok Kumar
Publisher : Apress
Total Pages : 136
Release : 2020-06-18
ISBN 10 : 9781484259405
ISBN 13 : 1484259408
Language : EN, FR, DE, ES & NL

Ensemble Learning for AI Developers Book Description:

Use ensemble learning techniques and models to improve your machine learning results. Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook. What You Will Learn Understand the techniques and methods utilized in ensemble learning Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce bias Enhance your machine learning architecture with ensemble learning Who This Book Is For Data scientists and machine learning engineers keen on exploring ensemble learning